19303851233

数据标注的工作原理

发表时间:2019-04-24 11:57

今天,最实用的机器学习模型利用的是监督学习,它应用算法以将一个输入映射到一个输出。为了使监督学习发挥作用,您需要一组带标签的数据,使模型能够从中学习以做出正确的决定。数据标注的起点通常是要求人类就指定的无标签数据做出判断。例如,标注者可能需要为数据集中“相片是否包含鸟”的答案为“是”的所有图片添加标签。添加标签可能像简单的是/否一样粗疏,也可能像识别图片中与鸟相关的像素一样精细。机器学习模型在名为“模型训练”的流程中,使用人类提供的标签学习背后的模式。 这样训练过的模型,可用于对新数据进行预测。


在机器学习中,您用作客观标准来训练和评估指定模型的正确标注的数据集通常称为“标准答案”。 训练过的模型的准确度将取决于标准答案的准确度,因此请付出一些时间和资源来确保高准确度的数据标注至关重要。